
PORTAL: A communication library for run-timevisualization of distributed, asynchronous dataJ. S. Rowlan B. T. Wightmanrowlan@mcs.anl.gov wightman@sol.acss.uwosh.eduMathematics Computer Science Division Computer Science DepartmentArgonne National Laboratory University of WisconsinArgonne, IL 60439 Oshkosh, WI 54901AbstractIn this paper we present a method for collecting andvisualizing data generated by a parallel computationalsimulation during run time. Data distributed acrossmultiple processes is sent across parallel communica-tion lines to a workstation, which sorts and queuesthe data for visualization. We have implemented ourmethod in a set of tools called PORTAL (for ParallelaRchitecture data-TrAnsfer Library). The tools com-prise generic routines for sending data from a par-allel program (callable from C or FORTRAN), and arun-time connection to the scienti�c visualization pro-gram AVS. Our method is most valuable when used toexamine large datasets that can be e�ciently gener-ated and do not need to be stored on disk. PORTALsource libraries, detailed documentation, and work-ing examples can be obtained by anonymous ftp frominfo.mcs.anl.gov from the �le portal.tar.Z from the di-rectory pub/portal.Key Words: Scienti�c Visualization, Distributed Al-gorithms, High-Speed Networking, Massively ParallelProcessing, Sockets.1 IntroductionMany large-scale computational science simula-tions, such as global climate modeling, structural biol-ogy, and superconductor modeling, are done on mas-sively parallel supercomputers. These simulations areusually time-dependent and often generate megabyte-sized (or larger) datasets at each time step. A typ-ical program execution might require the generationof many hundreds or even thousands of timesteps toproduce a meaningful animation. The result can bemany terabytes of data.

Such data is often stored on disk to be visualizedand reviewed on a graphics workstation at a laterdate. This process is often called batch-mode visu-alization, since the visualization occurs after all thedata has been created. Scienti�c visualization toolssuch as AVS are designed to work in this manner.Modern large-scale computations, however, can pro-duce amounts of data that are prohibitively expensiveto store on magnetic disk.We have created a set of tools called PORTAL (forParallel aRchitecture data-TrAnsfer Library) for visu-alizing data directly as the calculations occur. Theuse of these tools avoids the need for large disk stor-age. Such a real-time display mechanism can also beused to direct execution parameters during run time,something that cannot be done in batch-mode visual-ization.The focus of PORTAL is the visualization of dis-tributed data during run-time, however, some simula-tions require many seconds or even minutes to com-pute each frame. In these cases, we have used POR-TAL to generate the images which were then storedon laserdisc for viewing later.We note that e�ective visualization also requirescareful selection of graphics parameters, such as view-ing angle, object transformations, object color andother properties. When visualizing static, precom-puted datasets, interactive graphics tools are usedto manipulate the image. In a many-frame, time-dependent visualization such as those described in thispaper, these parameters must be selected before theanimation begins. Typically, a precomputed sampledataset is used to select these graphics parameters.

Graphics
Workstation

AVS
Coroutine

AVS Network

Parallel
Computer

CPU 1

CPU 2

CPU 3

Parallel
PORTAL data
packets

CPU NFigure 1: Overview of the PORTAL system2 MotivationThe development of the PORTAL tools was moti-vated by our work with a parallel climate modelingsimulation. After successfully implementing a paral-lel version of the MM-5 and CCM-2 climate models,we wished to run the simulation creating a visual an-imation of the results. Having no tools available todo this during run time, we were forced to write datato disk. However, since most animations of the cli-mate model required many thousands of timesteps, at�ve megabytes per data set, writing each to disk wasimpractical.As an alternative, we decided to send the data di-rectly to an AVS process over Unix sockets. This ap-proach proved quite successful, and we were able tocreate many video animations from the two parallelclimate models.Our initial e�orts produced application-speci�ctools that required signi�cant reworking to be appliedto di�erent simulations. Subsequently, we have madea communication library that is extensible and allowsthe user to de�ne the type and amount of data to besent.

3 The PORTAL Parallel Data LibraryPORTAL (see Fig. 1) was developed to assist usersof parallel programs to visualize the results of theircomputations. To make the tools easy to use, we feltit essential to remove the burden of socket program-ming from the user and to abstract the socket handlingroutines from the actual methods used to control sock-ets. We achieved this objective by providing the userwith a small number of function calls that automati-cally package and send data from the parallel machineto the workstation for visualization.Because of their portability and ease of use, UnixTCP/IP sockets were selected as the transport mech-anism to send data from the remote parallel compu-tation to the visualization process running on a localworkstation.Although PORTALwas designed with ease of use asa foremost consideration, the programmer must learnthe PORTAL function calls used to initialize the sock-ets for sending, initialize the receiving software, appro-priately package PORTAL data structures, and sendthe data to the receiving machine. These are listed inTable 1. Table 1. PORTAL function callsDS init socket write()DS create atom handle()DS create array 1D handle()DS create array 2D handle()DS create array 3D handle()DS AVSinit()DS send data vectors()DS close socket write()To use PORTAL, a user �rst calls the DS init-socket write() function, which opens a communica-tions port to a remote host and takes care of hand-shaking.Next, the program must create handles to thedata that the PORTAL system will be able touse. These are created with the DS create-datatype handle() functions. The function DS create-atom handle() is used for atomic data; one-, two-, and three-dimensional data types use DS create-array nD handle() (where n 2 f1; 2; 3g).

main(void)
{

/* Initialize the socket for sending */
DS_init_socket_write(&sock, &port, host);

...
/* Create a handle for the three−D dataset.

DS_create_array_3D_handle(&handle, &DS_REAL,"3D Data",&one,
&XDIM, &YDIM, &ZDIM,
&zero, &zero, &zero,
&XDm1, &YDm1, &ZDm1,
&DS_Z_DIM, &DS_Y_DIM, fracdata);

...
/* assign this data subset to the vector datavector. */

datavector[0] = &handle;
...

/* Now send the AVS coroutine the appropriate parameters
describing the format and type of data being sent. */

DS_AVSinit(sock, &one, &one, (int*)datavector, &one);
...

/* start the calculation loop */
for(i = 0; i < MAX_i; i++)
{

calculate(&i,fracdata);
/* Send the dataset to the receiver */

DS_send_data_vectors(sock, &one, (int*)datavector, &one, &one);
}

...
DS_close_socket_write(&sock); /* close socket */

} Figure 2: Pseudo-code example

The receiving program is then told what to ex-pect from the sender or senders through the DS initfunction. This information includes the total num-ber of processors sending data and the number andtype of information being sent (e.g., sixty processors,each sending two three-dimensional �elds, one two-dimensional �eld, and �ve integers (atoms)).Before the calculation is begun, a data structureis created to hold the data that will be sent to thereceiver. This is done using the DS create() functioncalls.At present, the only receiving program sup-ported by the PORTAL tools is AVS. Thus theDS AVSinit() function is used to send initializationdata. DS AVSinit() takes a data handle vector andpasses the information from the header needed tocon�gure the AVS module through the socket. TheAVS module then con�gures itself properly (see Sec-tion 5.1).After the computation module has calculated itsdatasets for a particular time-step, the data is thensent to the receiving workstation by calling theDS send data vectors() routine and supplying the ad-dress of the data structure. This function returnswhen it has passed all of the data to the remote pro-cess.Finally, after all data has been sent, the functionDS close socket write() is called to tell the remote re-ceiving program that the sending program is discon-necting. This functions calls the appropriate socketcommands for noti�cation of the remote program andthe socket commands for closing the actual socket.A pseudo-code example of the PORTAL process isshown in Figure 2.4 Packet StructureAll communication between the parallel nodes andthe graphics workstation is done through the use of adata-structure abstraction called a packet structure.In PORTAL, these packets are used as the mostbasic transmission unit; all communication is of thepacket form. The simple structure, appending onlytag and length �elds to the actual data, adds very lit-

tle overhead to the transmission, but allows a remoteprogram to identify, properly sort, and read all of thedata that is sent to it.The receiving machine is assumed to have no knowl-edge of the actual type and order of data beingsent. Therefore, all packets have an eight-byte header,called a tag �eld, that describes the structure of thepacket (see Table 2).The �rst four bytes of the tag �eld are used to iden-tify the type of data being sent. The next four bytesrepresent the length of the data being sent. Data issent following the tag �eld.There are three types of packets: control packets,AVS initialization packets, and data packets. Each isspeci�ed by the �rst four bytes of the tag �eld.Control packets are used to open and close sock-ets, monitor and maintain connections, de�ne byte failcounts, and identify other functions internal to un-derlying PORTAL processes to communicate betweenthemselves.AVS initialization packets contain information thatis used to prepare AVS for incoming data; this infor-mation includes the type of data being sent and thetotal number of CPUs sending data.Data packets include informationabout the particu-lar CPU sending the data, a time stamp, array majorand minor ordering, and the compositional relation-ship between the data being sent and the overall data(thus allowing a subset of data from a single node tobe properly reconstructed within the larger �eld be-ing calculated by all the nodes). Data packets arealways sent in pairs. The �rst packet is a descriptorspecifying the sending CPU ID, the full dimensions ofthe data �eld across all nodes, the subset of data beingsent, and array major and minor ordering information.The second packet contains the data itself.Table 3 shows a typical series of packets sent byPORTAL during execution of a program.

tag control, avs_init, data
12−bits

tag type start, end, header, data
4−bits

avs data avs data, avs header
4−bits

storage type atom, 1D, 2D, 3D, Molecular, UCD
4−bits

data type int16, int32, real, real8, char
8−bits complex8, complex16, logical

length length in bytes of data section
4−bytes

DATA variable length byte stream
variable

tag field flags possible values

Table 2: Packet structure (8-byte tag �eld followed bydata)

Packet Structure:
(tag, tag type, avs type, storage type, data type, length, DATA)

Packets sent during program startup:

(control, header, none, none, hello, zero, no data)
(control, header, none, none, set_fail_count, var, fail count)
(AVSinit, start, none, none, none, fixed, #CPUs, CPU id,
 number of data
 packets to follow)
...
For each data packet being sent:
(AVSinit, none, data, type, type, var, data header)
...
After all the descriptors are sent:
(AVSinit, end, none, none, none, fixed, #CPUs,CPU id,
 number of packets)

The following packets are sent for each data field calculated:

(data, start, none, none, none, zero, no data)
(data, header, none, type, type, zero, no data)
(data, data, none, none, none, var, DATA field)
(data, end, none, none, none, zero, no data)

At program completion:
(control, header, none, none, goodbye, zero, no data)Table 3: Typical packets sent during program execution

5 PORTAL Visualization5.1 AVS ImplementationAVS is a popular scienti�c visualization programin use at Argonne National Laboratory. It providesmany tools for data visualization but no support forrun-time visualization of large-scale parallel codes. Al-though originally designed, and primarily used, as abatch-mode visualization tool (i.e., on precomputeddata), we felt that AVS could be enhanced to meetour need for run-time display of data.In the AVS implementation of PORTAL, the datareceiver is packaged within an AVS coroutine (calledRead Socket). This module understands the PORTALsocket packet structure; and it reads, sorts, and queuesthe incoming PORTAL data packets. Read Socketoutputs the data in AVS �eld format.Since the sockets receiving data must be openedbefore the sending sockets can be opened, the AVSroutine is the �rst process to be started. The AVSRead Socket module adapts itself to the type of databeing sent and con�gures its output ports accordingly.However, at startup, the AVS module does not knowwhat type of data it will receive, so it must start upin a wait state until the sending nodes each make aDS AVSinit() function call.After successful receipt of an DS AVSinit() callfrom each processor, the AVS module learns the typeof data it will be reading from the sockets, con�guresits output ports appropriately, and enters a run state.Since the AVS module is in a wait state until themodule is initialized, AVS will appear to hang untilthe remote program starts and has sent the initializa-tion parameters. Thus the Read Socket module cannotbe attached to an AVS network until the initializationstage has completed. This causes a problem when sav-ing a network, since the Read Socket module cannotsave its dynamic connections. However, it is a fairlysimple matter to build and save the rest of the net-work, pull the read socket module onto the palette,start the remote application, and attach a couple ofmodules once the read socket module is con�gured.Since multiple processors are sending data to the re-ceiving workstation, and since these transmissions are

potentially arriving at di�erent rates, the AVS modulemust also queue up and synchronize the data packetsit receives, to ensure that all data is ordered correctly.Synchronizing data is accomplished via a dataqueue. By the use of a user tag, which is passed to theDS send data vectors() function, the data is markedat a certain \time step" and then grouped with otherpackets from the same time step. The front item inthe queue is not released until all of the machines havesent data for that time step. This means that if a pro-cessor does not have data for a particular time step,it must send at least a null packet.Each queue entry is constructed of an ID marker, alist of machines that information is still needed from,and the list of data that has been received. This o�ersa quick check of whether or not the data can be takenfrom the queue and placed on the output ports of themodule by examining the machine list to see whetherthere are any machines remaining to read from.5.2 Porting to Other ImplementationsThe PORTAL receiving process is written in stan-dard ANSI C and is comprised of a function that lis-tens to a series of sockets for PORTAL-format data,and a system of bu�ers to reconstruct datasets fromtheir sub-parts, and queue up asynchronous datasetsthat arrive early for reconstruction later. These func-tions are independant of the visualization system used.Porting the receiver process from the AVS imple-mentation to another visualization package just re-quires changing the AVS data pipeline code to conformto the format required by the visualization package se-lected.6 ConclusionsPORTAL allows a parallel program to send asyn-chronous distributed data to a remote graphics work-station for run-time visualization. Thus, it can o�setthe need to store many gigabytes or terabytes of dataon disk. The immediate feedback of a run-time systemalso o�ers greater e�ciency in identifying program er-rors or inaccurate parameters.

7 Future DirectionsFuture enhancements to the PORTAL package willinclude feedback from the graphics package to deter-mine the behavior of the remote module. This couldalso be used to enhance the error recovery mechanismsof the system by allowing non-acknowledged packets,retries, and reconnects.We are currently extending the data types sup-ported by PORTAL to include both a molecular modeland UCD (Unstructured Cell Data) data type.Support will also be added for other transportmechanisms including IPI-3, EUI, and FCS.Finally, we plan to port the socket reader moduleto other graphics packages, allowing a user to picka visualization package that best suits the tastes orneeds of the programmer.AcknowledgementsThis work was supported be the o�ce of Scienti�cComputing, U.S. Department of Energy, under Con-tract W-31-109-Eng-38.References[1] \AVS Developer's Guide," Part 320-0011-02 RevB, Release 4, Advanced Visual Systems Inc., May1992.[2] \Sun Network Programming Guide," Part 800-3850-10, Release A, Chapters 10,11, Sun Microsys-tems Inc., March 27, 1990.

